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VARIATIONAL METHODS OF CONVOLUTION INTEGRAL AND OF 
LARGE SPRING CONSTANTS - A NUMERICAL COMPARISON 

Julian J, Wu 
B.S. Army Armament Research and Development Coimnand 

Benet Weapons Laboratory, LCWSL 
Watervllet, NY 12189 

n„i- fS?2142?-', Ffnite element solution formulations have been carried 
M««i? -I ^  inltlal value Problem based on two different varla- 
llTtl  fa^ent8!  that of convolutlonal integral developed by Gurtln 
^„: «! ?i   8e Sprln8 constant8 adapted by this writer for initial 
^r^ ^  ' Numerical results indicate that both generate conver- 
gent solution to the given initial value problem of a fprlng-mass 
system subjected to a harmonic forcing function. 

1.  INTRODUCTION. Through a simple initial value problem, this 

^M  ;^ateS the USe 0f the finite eleraent discretization in con- 
result^ 12 tw° varlational formulations and compares the numerical 
results. The variational principles of convolutlonal integral for 
1 , ^^"c.   were developed by Gurtin some sixteen years ago (ref. 
t,w/  *     then the3B  fonnulations have been applied to obtain 
.solution of transient problems (ref. 3 and 4). However, the time dim- 
llllZr™*  treated4

separately from the spatial dimensions in the finite 
tllT^  approxiniation schemes. The viewpoint adopted in this note is 
JllLl      cfParatf treatment of spatial and time coordinates is unnec- 
essary.  Since the initial value problems are nonself-adjolnt. the 
ad?oW0?f ?5 Var^ional Problems can be formulated with the help of 
soiuMon^  l/"1^8 ^ thu8 Can be USed in Ritz-finite element 
^t^J    .   8UCh formulatlon is used here to compare with the for- 
Tlllt?! TTS  "nvolutlon integral in terms of numerical results for 
a simple initial value problem. 

eauatlon oJ It^H^S Sim?le  rfS~Sprln8 System-  The differential equation of the displacement u(t), a function of time t is 

mil + ku - f0 cos oift (1) 

where m is the mass, k, the spring constant. A dot (•) denotes differ- 
«nH f. nn     respect to t.  The parameters f0 and wf denote magnitude 
and frequency respectively, of the forcing function. fThe initial condi- 
tlons are given as 

u(0) - u0 , u(0) = ^ (2) 



We shall further use the equation 

a,2 - * . f - ^ m *    m 

Thus Eq. (1) has the form 

il + w2u - f cos Uft (3) 

2.  VARIATIONAL FORMULATION OF CONVOLUTIONAL INTEGRALS.  The varia- 
tional principle for the problem defined by Eqs. (3) and (2) is (ref. 2): 

<Sl(u) = 0 (4a) 

where 

I ■ 2 [u(t)«u(t) + ti)2t*u(t)*u(t)] 

" [u0 + Tnr + ult " TTT cos uft]*u(t) (4b) 

The operator * defines a convolution integral in the following equation 
,t 

u(t)*v(t) - / u(t-T)v(T)dT (5) 
o 

Vhere u(t) and v(t) are two arbitrary functions of t. 

To see that the variational problem of Eqs. (4) is indeed equiva- 
lent to the original problem defined by Eqs. (3) and (2), one writes, 
from Eqs. (4): 

61 - [u(t) + a)2t*u(t) - (uQ + -T- + u, t - -T- cos a)4:t)3*6u(t) = 0 

for arbitrary 6u(t). Thus, 61 = 0 leads to Eq. (6) 

u(t) + a)2t*u(t) - (uft + ^x- + nt - -^y cos w^t) - 0      (6) 0  uf
z   1   a)f

2     f 

It is clear from Eq. (6) that u(0) - u0. 

Differentiate Eq. (6) once, one has 

u(t) + a)2 f u(T)dT - u. - -L cos to^t ■ 0 (7) 
o 1  (0f     f 

Eq. (7) gives u(0) = uj^. Thus both of the initial conditions are sat- 
isfied. The differential equation is recovered when Eq. (7) is differ- 
entiated once more. Note that in obtaining Eq. (7) the following 
differentiation formula has been used. 



Let 
t 

F(t) - / v(t-T)u(T)dT 
o 

Then 
._     t 

dt  " "f f? ^-T)"^)^ + v(0)u(t) 

3.  VARIATIONAL FORMULATION WITH A LARGE "SPRING" CONSTANT.  Consider 
the following varlatlonal problem 

6l(u,v) - 0 (8a) 

with i i 
I(u,v) - - / u^ dt + / (u2u-f)v dt 

0        0 
+ a[u(0) - u0]v(l) - u v(0) 

In Eqs. (8), u(t) is the physical field variable and v(t) is the adjoint 
variable. This varlatlonal problem is unconstrained since the trial 
functions of neither u(t) nor v(t) are subject to any end condition 
requirements. To see that the set of Eqs. (8) is equivalent to the 
original initial value problem, it is only necessary to carry out the 
first variation and perform once integration-by-part.  Thus, one has 

<Sl(u,v) - 0 
1 

- /  (u+w2u-f)5v dt 
0 

+ {o[u(0) - u0] - u(l)}6v(l) + [i(0) - u1]6v(0) 

+ /    (v4tjj2v)6u dt 
0 

+ {a v(l) + v(0)}6u(0)  v(l)6u(l) (9) 

It is clear then if one chooses v(t) = 0 and let 6(t) be completely 
arbitrary, Eqs. (9) reduce to the original initial value problem as a 
approach to infinity. 

4.  PROCESS OF FINITE ELEMENT DISCRETIZATION.  In case of convo- 
lutional integral, the varlatlonal equation used is Eq. (6) in Section 
2. Rewrite Eq. (6) as 

51 " [u(t) + a)2t*u(t) - F(t)]*5u(t) =- 0 (10a) 



where 
F(t) - un + -~ + u-t - -^5- cos w.t (10b) 

0  a)£'   1   (jaf
z     * 

In Eq. (10a), there are three convolution Integrals to be evaluated: 
(a) u(t)*6u(t); (b) a)2t*u(t)*5u(t); and (c) F(t)*i5u(t). 

(a) For u(t)*6u(t); 
t 

u(t)*6u(t) - / u(t-T)du(T)dT 
o 

Let 

one has then 

Consider 

T a x/t 

1 _ 
u(t)*6u(t) = t / u(l-T)6u(T)dT 

0 

1 
I - / u(l-T)5u(T)dT 

0 
This integral is evaluated by finite element discretization. 

L  ^i 
I  "     I     I u(l-T)6u(T)dT 

1=1 Vl 
Let 

Hence 

% 
i 

0 - Q . ^ - 1 . li'l 

5 =- 5(i) - L T - i + 1 

X - 1 [5 + i - 1] 

dx - i d5 

G(T) - S[l (5+1-1)] - Z(±)(0 

u(l-T) = G[i (L-5-i+l)] 

- S[i (1-5+L-1+1)] - n(L~i+1)(i-o 



Thus 

i- I i/'u^^a-oaG^codc 
i-l L 0 

U3e the matrix representations for the shape function and generalized 
coordinates.  One writes 

and 

Thus 

u(i)(C) ~  aT(0 U^) 

aa-i+i)(i_0  . aT(1.0u(L-l+l) 

I - I I 5U(i> / a(OaT(l-Od^ U(L-i+1) 
1=1   "    0 *  *" 

I.i J 6u(i>T A U(L-i+1> 
L 1-1 "    " "" 

where i 
A - / a(C)aT(l-C)dC (Ua) 

o *■ •v 

Or 

Hence 

u(t)*6u(t) = tl = f I      U(i)A 0(L~1+1) (lib) 
l-l * 

(b) For (o2t*u(t)*Su(t); 

The evaluation of this double convolution Integral Is somewhat more 
complicated. First consider 

t 
t*u(t) = /  (t-T)u(T)dT 

o 
Then 

I - [t*u(t)]*6u(t) 
t  t-X 

- / {/   (t-X-T)u(T)dT}6u(X)dX 
o  o 
t t-X 

- / /   (t-X-T)u(T)6u(X)dTdX 
o o 



Again  let 

t • A   t 

Thus U(T) becomes U(T), 6U(X) to 5lI(X), etc. One has 

I 1-X 
I - ts / /   (l-X-T)u(T)6u(X)6TdX (12) 

0 0 

It should be pointed out that the change of variables from T,X to T,X 
(so that the limit of Integration Is changed from t to unit) Is carried 
out after writing down explicitly the double convolutlonal Integral 
and not before. This Is due to the fact that the definition of a 
convolution Integral requires that t appears explicitly In the Inte- 
grals, To evaluate I of Eq. (12) we write 

I - t'l 

and work on T Instead, 

1 1-X 
1 " I    I        (l-X-T)u(T)5u(X)dTdX 

0 0 

The area of Integration In (X,T) plane Is the triangle bounded by lines 
X - 0, T - 0 and T ■ 1-X (shown In shaded area In Figure 1). Using the 
step function 

H(l-X-T) -  1, T < 1 - X 

0, T > 1 - X 

one can write 
11 

I = / / H(l-X-T)(l-X-T)G(T)6u(X)dTdX (13) 
0 0 

Equation (13) will be used for finite element discretization. We shall 
divide the unit square In (X.T) plane Into smaller squares of L x L 
(Figure 2), Let 

K  - ?(1) - LX - 1 + 1 

n - n(i) - LT - j + i 
(1A) 



(0.1) 

(0,0) 

Figure 1. Area of Integration for a double integral 
of convolution:  t*u(t)*6u(t). 

>x z >> 

^ ^ 
.—i+j>L+l 

—l+j=L+l 

// z >x ^ ^ 
—i+j<L+l 

y. // y >C 
0 y. 0 % 

\ 

Figure 2, Area of integration using finite elements, 



Thus 

and 

<Sy(X) + 6y(i)(0 

y(T) -^ y(:j)(n) 

i-X-T-i{L + i-i-j + (i-^-n)} 

I " A  I    I/1 / H(ij)(L+i-i-j+i^-n) • 
L    i-l j-1   0    0 

Or. 

(L+i-i-j+i-c-n)y(j)(n)6y(1) (S)clndC (15) 

I -    I      I    WL3 (16) 
1-1 j-1    J 

with 1    1 
IH   - /    /    HU^(L+l-l-j+l-?-n)   • 

J        0    0 

. (L+i-i-j+i-^-n)y(J)(n)6y(i)(5)d?dn (17) 

since 1-X-T=0    ,    L+l-ij+ (l-^-n)  - 0  . 

Or, 

i-C-n-i + J- (L+i) 

Thus,   three cases to consider for H^ ^ 

(i) H(1J)  -1     ,     i + j<L + l 

(ii) H(ij)   -0    ,     i+j>L+l (18) 

(iii)       H(i:l)  - H(l-?-n)     ,     1 + j   - L + 1 

For case  (i),  one has 

In-/   /   a+2-i-j)y(j)(06y(i)(Odnde 

<SY(i)     /    /     (L+2-i-j-^-n)a(5)aT(Ti)dnd^ Y(J) 

oo -     " 
- 6Y(1)  A(1J)Y(J) 



0    0 
For case (il). 

7(1J)        r1   r1 T 
A    J    - /    /    (L+2-l-J-e-n)a(OaT(OcindC 

hi'0 

For case (111), 
1    1 

hj 'I   /   H(i-^n)(i-5-n)y(j)(n)eiy(1)(Odnd^ 

- /   /      (i-C-n)y(J)(n)«y(i)(Odndc o   o 

^    -(O  /     '  (l-£-n)aT(n)dnd£ Y(J) 

o -       0 
- T      /   •«) /      (i-C-n)aT(n)dnde Y{ 

- dy^)1 A y<J> 

1 1-5 
A - /   a(C) /      (i-C-n)aT(n)dnd5 

0 0 
Consequently, 

lmtth'h I    I  hi L i-i j-i  XJ 

i + j  < L + 1    *    I      . 6Y(1)A(iJ>Y(^ 

1 + J>L + 1    +    h*  m 0 

i + J-L + 1    -I..  - (SY^A Y(d) 

-(H)        1    1 

A    ^ - /    /    (L+2-l-j-S-n)aa)aT(T1)d5dn 
0    0 -      ~ 

1        1-5 
A - /    a(5)  /        (l-5-n)aT(n)dTidC 

0 0 

(19) 

(20) 

(21) 



And thus 
2.1 L  L 

(22) a)
2t*u(t)*6u(t) - o)^1 I - ^-f- I      I    I,4 

L  1-1 J-l 1J 

(c) For F(t)*6u(t) with F(t) given In Eq. (10b), one has 

F(t)*6u(t) - (a+bt+c cos uft)*6u(t) 

- a[l*6u(t)] + b[t*5u(t)] + c[cos uft]*(5u(t) (23) 

where, from Eq. (10b): 

Now, for Eq. (23), one has 
L     T 1 

l*6u(t) = f- I SVW j    a(Od5 (25) 
L 1-1 ~ 0 ~ 0 

1 
t*6 

and 

"(t) "TT X <SU(i) {(L-l+1) / a(^)dC - / ?a(OdU    (26) 
L 1-1 " 0 "'       0  ~ 

L   /4^T 1 t  r    (I)-1 / "ft 
cos u-t *6u(t) - f- I 6U    J  a(5) cos [—-  (L-l+l-^)]dC   (27) U i-l    " 0   " IJ 

Now, Eqs. (lib), (22), (23) through (27), a global matrix equation can 
be written as 

6UT K U - 6UT F (28) 

Or 
K U - F (29) 

which Is then solved. 

The finite element discretization procedure for the varlatlonal for- 
mulation using a large spring constant has been described elsewhere (see, 
for example, ref. 5) and will not be repeated here. 

10 



5. NUMERICAL RESULTS. Numerical values of the parameters in the 
given example as stated In Section 1 are as the following: 

m - 1.0 » k - 1.0 

1.0 

f - 1.0 
o 

y, - i.o 

Uj 0.5 

Computational results are presented In Tables 1 through 4.  Table 1 and 
2 compare results of the two methods In an interval of 0 £ t < 10, which 
is about the time for a complete forcing cycle. The results Tor y(t) 
and y(t) are excellent for both methods. As the interval becomes shorter, 
0 £ t £ 2 as shown in Table 3 and 4, the convergence is further Improved. 

TABLE 1. 

0 S t S  10.0 

NUMERICAL COMPARISONS BETWEEN TOO 
UNCONSTRAINED VARIATIONAL METHODS 

10 Elements 

t ^N^ 
Convo Spring Exact 

Integ. M Const. M Solution 

0 0.999 1.000 1.000 
2.0 1.769 1.770 1.768 
4.0 -1.094 -1.094 -1.094 
6.0 -1.920 -1.920 -1.919 
8.0 0.167 0.167 0.167 

10.0 0.113 0.114 0.114 

TABLE 2.  NUMERICAL COMPARISONS BETWEEN TOO 
UNCONSTRAINED VARIATIONAL METHODS 

0 i t i 1,0 10 Elements 
^y'(t) Convo Spring Exact 

Integ. M Const. M Solution 

0 1.011 1.004 1.000 
2.0 -0.675 -0.675 -0.674 
4.0 -1.520 -1.518 -1.512 
6.0 0.780 0.778 0.773 
8.0 0.691 0.690 0.689 
10.0 -0.391 -0.385 -0.381 

11 



TABLE 3.  NUMERICAL COMPARISONS BETWEEN TWO 
UNCONSTRAINED VARIATIONAL METHODS 

0 ^ t i 2.0                          10 Element 8 

A'i Convo             Spring Exact 
t ^s Integ. M          Const. M Solution 

0 1.000000           1.000000 1.000000 
0.4 1.389154           1.389154 1.389153 
0.8 1.713203           1.713203 1.713203 
1.2 1.911703          1.911702 1.911701 
IA 1.938251           1.938251 1.938249 
2.0 1.768413          1.768416 1.768416 

TABLE 4.  NUMERICAL COMPARISONS BETWEEN TWO 
UNCONSTRAINED VARIATIONAL METHODS 

?^—n—n OS t^ 2.0                                                                 10 Element 8 
Convo             Spring Exact 
Intes. M           Const. M Solution 

0 0.99999           1.00000 1.00000 
0.4 0.91844           0.91843 0.91842 
0.8 0.67623           0.67622 0.67621 
1.2 0.29662           0.29662 0.29661 
1.6 -0.17425           -0.71424 -0.17425 
2.0 -0.67425           -0.67413 -0.67403 

In conclusion, we have observed that the numerical convergence of the 
method of large spring constants, in the simple example given, is at least 
as good as that of the formulation through the variational principle of 
convolutional integrals. Both are easily adapted for finite element 
discretization. Due to the fact that the variational principles of con- 
volutional integrals can be formulated only for a very restricted class of 
problems (of constant coefficients, for example).  The alternate approach 
of large spring constants appears to be quite attractive to obtain solu- 
tions of non-self-adjoint problems in general and of initial value prob- 
lems and initial boundary value problems in particular. 

12 
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